
AFRL annot of Single Co

Development of Single Case Studies for Micromechanics Damage Evolution in UD Composites

Mark Flores

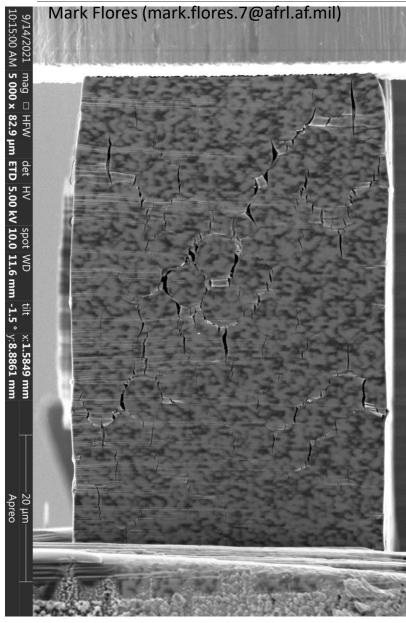
Mark Flores (mark.flores.7@afrl.af.mil)

Search and Destroy (One and Done)

What is it?

- One study where we infer statistical relevancy to a broader study. What value do you get from one study?
- A movie speaks volumes

Why perform one study?


- Micromechanical testing at this scale is extremely scarce to nonexistent
 - Often requires post mortem analysis of the microstructure
- Multiscale Design
 - Many micromechanical models have never been fully validated when it comes to progressive failure(even those that use AI/ML)
- Integrated Computational Materials Science and Engineering
- Multi-physics relationships (specifically modelling)

It took 5 years for all of the Transverse Compression work

What about YT, S₁₂, S₂₃, E22T, G₁₂, G₂₃, G_{IC}, G_{IIC}

Market Requirements for a Single Case Study

Requirements

- 1. The microstructure under loading must be in the field of view
 - Where fiber locations and diameter can be recorded
- 2. The experiment must be able to capture the damage initiation and propagation of said microstructure
- 3. Force vs time data
- 4. Experiments will be conducted on neat resin at the same scale if possible.
- 5. Develop a Digital Twin of the experiment

Ancillary Requirements

- 1. Full-field measurements from digital image correlation
- 2. Effective strain from the piezoelectric actuator
- 3. Repeats not necessary, try studying different sizes instead

Not Requirements

- 1. Procuring a uniform stress distribution across the microstructure (DIC could help in the initial state)
- 2. Performing side studies to validate correct loading mechanisms
- 3. Reducing the influences of edge effects

THE AIR FORCE RESEARCH LABORATORY

💓 🛦

Flores, Mark, et al. "Experimental analysis of polymer matrix composite microstructures under transverse compression loading." *Composites Part A: Applied Science and Manufacturing* 156 (2022): 106859.

Figure 12. Transverse compression failure between two similar microstructures a) TC-3 with an undamage TC-4 and b) TC-4 with a damaged TC-3 for comparison.

Figure 14. a) Damage of TC-2 microstructure after observed initiation of a debond and matrix crack b) X-ray nCT quantification of unloaded TC-2 damaged specimen.